Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The indirect detection of dark matter (DM) through its annihilation products is one of the primary strategies for DM detection. One of the least constrained classes of models is neutrinophilic DM, because the annihilation products, weakly interacting neutrinos, are challenging to observe. Here, we consider a scenario where MeV-mass DM exclusively annihilates to the third neutrino mass eigenstate, which is predominantly of tau and muon flavor. In such a scenario, the potential detection rate of the neutrinos originating from the DM annihilation in our Galaxy in the conventional detectors would be suppressed by up to approximately two orders of magnitude. This is because the best sensitivity of such detectors for neutrinos with energies below approximately 100 MeV is for electron neutrino flavor. In this work, we highlight the potential of large-scale DM detectors in uncovering such signals in the tens of MeV range of DM masses. In addition, we discuss how coincident signals in direct detection DM experiments and upcoming neutrino detectors such as DUNE, Hyper-Kamiokande, and JUNO could provide new perspectives on the DM problem. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
In environments with prodigious numbers of neutrinos, such as core-collapse supernovae, neutron star mergers, or the early Universe, neutrino-neutrino interactions are dynamically significant. They can dominate neutrino flavor evolution and force it to be nonlinear, causing collective neutrino oscillations. Such collective oscillations have been studied numerically, for systems with up to millions of neutrinos, using mean-field or one-particle effective approximations. However, such a system of interacting neutrinos is a quantum many-body system, wherein quantum correlations could play a significant role in the flavor evolution—thereby motivating the exploration of many-body treatments that follow the time evolution of these correlations. In many-body flavor evolution calculations with two neutrino flavors, the emergence of spectral splits in the neutrino energy distributions has been found to be correlated with the degree of quantum entanglement across the spectrum. In this work, for the first time, we investigate the emergence of spectral splits in the three-flavor many-body collective neutrino oscillations. We find that the emergence of spectral splits resembles the number and location found in the mean-field approximation but not in the width. Moreover, unlike in the two-flavor many-body calculations, we find that additional degrees of freedom make it more difficult to establish a correlation between the location of the spectral splits and the degree of quantum entanglement across the neutrino energy spectrum. The observation from the two-flavor case, that neutrinos nearest to the spectral split frequency exhibit the highest level of entanglement, is more difficult to ascertain in the three-flavor case because of the presence of multiple spectral splits across different pairwise combinations of flavor and/or mass states. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino backgroundThe neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector.more » « less
An official website of the United States government
